Голосов: 0
#1
Автор: Красный Циркуль
Название: Владислав Кузьменков - Торговый агент на основе сверточной сети (2019)
Вы можете создать множество моделей, которые с некоторым успехом прогнозирует цену, но разве это вам нужно? Трейдера зарабатывают не на прогнозах, а на верных решениях. Как научить модель не предсказывать, а принимать решения?
Представим трейдинг в виде игры и осуществим небольшое погружение в обучение с подкреплением. Напишем очень простое своё gym окружение для торговли индексом РТС. Реализуем метод обучения Policy Gradient и посмотрим на результаты эмуляции торговли нашей нейронной сети.
Программа:
Занятие 1
Название: Владислав Кузьменков - Торговый агент на основе сверточной сети (2019)
Вы можете создать множество моделей, которые с некоторым успехом прогнозирует цену, но разве это вам нужно? Трейдера зарабатывают не на прогнозах, а на верных решениях. Как научить модель не предсказывать, а принимать решения?
Представим трейдинг в виде игры и осуществим небольшое погружение в обучение с подкреплением. Напишем очень простое своё gym окружение для торговли индексом РТС. Реализуем метод обучения Policy Gradient и посмотрим на результаты эмуляции торговли нашей нейронной сети.
Программа:
Занятие 1
- Что такое обучение с подкреплением и где оно используется
- Зачем нужен OpenAI Gym и как он работает
- Интуитивное представление о методе обучения Policy Gradient
- Пишем gym environment на Python
- Как работает Policy Gradient
- Реализация Policy Gradient на Python
- Результаты обучения нейронной сети
- Целесообразность такого подхода. Над чем нужно ещё работать
Подробнее:
Чтобы скачать курс, новым пользователям, необходимо Пройти Регистрацию
Если у вас уже есть аккаунт Войти на Форум
Скачать:
Чтобы скачать курс, новым пользователям, необходимо Пройти Регистрацию
Если у вас уже есть аккаунт Войти на Форум